MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.
MECÃNICA GRACELI GERAL - QTDRC.
equação Graceli dimensional relativista tensorial quântica de campos G* = = [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
---|---|---|---|---|---|
Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
/
/ G* = = [ ] ω , , .=
MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS. EM ;
MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.
dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.
- [ . / ω
G { f [dd]} ´[d] . / f [d] G* dd [G]
- [ . / ω
G { f [dd]} ´[d] . / f [d] G* dd [G]
- [ . / ω
G { f [dd]} ´[d] . / f [d] G* dd [G]
- [ . / ω
G { f [dd]} ´[d] . / f [d] G* dd [G]
- [ . / ω
G { f [dd]} ´[d] . / f [d] G* dd [G]
- [ . / ω
G { f [dd]} ´[d] . / f [d] G* dd [G]
- [ . / ω
G { f [dd]} ´[d] . / f [d] G* dd [G]
Na mecânica quântica, uma função de estado é uma combinação linear (uma superposição) de valor próprio. Numa Representação de Schrödinger, o estado de um sistema evolui com o tempo, onde a evolução para um sistema quântico fechado é provocada por operador unitário chamado de operador da evolução temporal. Isto difere de uma Representação de Heisenberg onde os estados são constantes enquanto os observáveis evoluem com o tempo. As estatísticas de medição são as mesmas em ambas as representações.
O operador de evolução temporal
Definição
O operador de evolução temporal U(t,t0) é definido como:
Isto é, quando este operador está agindo no estado "ket" em t0 no dá o estado "ket" em um tempo t. Para "bras", nós temos:
Propriedades
Primeira propriedade
A operador da evolução temporal deve ser unitário. Isto é necessário porque nós precisamos que a norma do estado "ket" não mude com o tempo. Isto é,
Em consequência disto,
Segunda propriedade
Distintamente U(t0,t0) = I, a função identidade. Como:
Terceira propriedade
A evolução temporal de t0 para t pode ser vista como a evolução temporal de t0 para um tempo t1 indeterminado e de t1 para o tempo final t. Então conclui-se:
Equação diferencial para o operador da evolução temporal
Se dermos, por convenção, o índice t0 no operador da evolução temporal de forma que t0 = 0 e escrevermos isto com U(t). A Equação de Schrödinger pode ser re-escrita da seguinte forma:
Onde H é o Hamiltoniano para o sistema. Como é uma constante de ket (o estado ket é da forma t = 0), nós vemos que o operador da evolução temporal obedece a Equação de Schrödinger:
Se o hamiltoniano independe do tempo, a solução da equação acima será:
Onde nós também usamos o facto que t = 0, U(t) precisa reduzir para a função identidade. Assim obteremos:
Perceba que é um ket arbitrário. Apesar de que, se o ket inicial é um valor próprio do hamiltoniano, com o valor próprio E, nós temos:
Assim, vemos que os valores próprios do hamiltoniano são estados estacionários, eles apenas escolhem um fator de fase global já que eles evoluem com o tempo. Se o hamiltoniano é dependente do tempo, mas os hamiltonianos de diferentes tempo comutam, então o operador da evolução temporal pode ser escrito da forma:
Uma alternativa para a Representação de Schrödinger é trocar para uma rotação de referências de quadros, que seja rotacionada pelo propagador do movimento. Desde que a rotação ondulatória seja agora assumida pelo próprio referencial, uma função de estados não perturbados surge para ser verdadeiramente estáticos.
Comments
Post a Comment